考虑势 $V$ 为:
$$
V(x)=\frac{1}{2}\omega^2x^2
$$
对应的定态薛定谔方程为:
$$
-\frac{\hbar^2}{2m}\nabla^2\psi+\frac{1}{2}\omega^2x^2\psi=E\psi
$$
其算符形式为:
$$
\hat{H} \psi=E\psi
$$
化简算符 $\hat{H}$ 得:
$$
\begin{aligned}
\hat{H}
&=-\frac{\hbar^2}{2m}\nabla^2+\frac{1}{2}\omega^2x^2, \quad \hat{p}=-i\hbar\nabla \\
&=\frac{1}{2m}\left(\hat{p}^2+(m\omega x)^2\right) \\
&=\frac{1}{2m}((\underbrace{i\hat{p}+m\omega x} _ {\sqrt{2\hbar m\omega}a_{-}})(\underbrace{-i\hat{p}+m\omega x} _ {\sqrt{2\hbar m\omega}a_+})+im\omega [x,\hat{p}]) \\
&=\frac{1}{2m}(2\hbar m\omega a_{-}a_{+}-\hbar m\omega) \\
&=\hbar \omega a_{-}a_{+}-\frac{1}{2}\hbar\omega
\end{aligned}
$$
即:
$$
\begin{aligned}
& a_{-}a_{+}=\frac{\hat{H}}{\hbar \omega}+\frac{1}{2} \\
& a_{+}a_{-}=\frac{\hat{H}}{\hbar \omega}-\frac{1}{2}
\end{aligned}
$$
其中 $x,\hat{p}$ 的对易子为:
$$
\begin{aligned}
\left[x,\hat{p}\right] f(x)
&=x\hat{p}f-\hat{p}(xf) \\
&=-i\hbar x\nabla f+i\hbar\nabla(xf) \\
&=i\hbar(-x\nabla f+ f+x\nabla f) \\
&=i\hbar f(x)
\end{aligned}
$$
即:
$$
[x,\hat{p}]=i\hbar
$$
考虑 $a_{-},a_{+}$ 的对易子:
$$
\begin{aligned}
\left[a_{-},a_{+}\right]f(x)
&=\frac{1}{2\hbar m \omega}
\left((\hbar \nabla+m\omega x)(-\hbar \nabla+m\omega x) f-(-\hbar \nabla+m\omega x)(\hbar \nabla+m\omega x) f\right) \\
&=\frac{1}{2\hbar m \omega}
\left((\hbar \nabla+m\omega x)(-\hbar \nabla f+m\omega xf)-(-\hbar \nabla+m\omega x)(\hbar \nabla f+m\omega xf)\right) \\
&=\frac{1}{2\hbar m \omega}
\left( -\hbar^2\nabla^2f-\hbar m\omega x\nabla f+\hbar m\omega \nabla(xf)+(m \omega x)^2f
+\hbar^2\nabla^2f-\hbar m \omega x\nabla f+\hbar m\omega \nabla(xf)-(m\omega x)^2f \right) \\
&=\frac{1}{2\hbar m \omega}(-2\hbar m\omega x\nabla f+2\hbar m\omega \nabla(xf)) \\
&=\frac{1}{2\hbar m \omega}(-2\hbar m\omega x\nabla f+2\hbar m\omega \nabla f+2\hbar m\omega f) \\
&=1 \cdot f(x)
\end{aligned}
$$
即:
$$
[a_{-},a_{+}]=1
$$
将算符 $\hat{H}$ 代回定态薛定谔方程,得:
$$
\hbar\omega\left(a_{\mp}a_{\pm}\mp\frac{1}{2}\right)\psi=E\psi
$$
假设 $\psi$ 是能量 $E$ 的定态薛定谔方程的解,对于 $a_{+}\psi$,有:
$$
\begin{aligned}
\hat{H}(a_{+}\psi)
&=\hbar \omega \left(a_{-}a_{+}-\frac{1}{2}\right)a_{+}\psi \\
&=\hbar \omega \left(a_{-}a_{+}^2-\frac{1}{2}a_{+}\right)\psi, \quad [a_{-},a_{+}]=1=a_{-}a_{+}-a_{+}a_{-} \\
&=\hbar \omega\left( (1+a_{+}a_{-})a_{+}-\frac{1}{2}a_{+} \right)\psi \\
&=\hbar \omega\left( a_{+}a_{-}a_{+}+\frac{1}{2}a_{+} \right)\psi \\
&=\hbar\omega a_{+}\left(a_{-}a_{+}+\frac{1}{2}\right)\psi \\
&=a_{+}\hbar \omega \left(a_{+}a_{-}+\frac{1}{2}+1\right) \psi \\
&=a_{+}(\hat{H}+\hbar \omega)\psi \\
&=a_{+}(E+\hbar \omega)\psi \\
&=(E+\hbar \omega)(a_{+}\psi)
\end{aligned}
$$
即 $a_{+}\psi$ 的能量为 $E+\hbar \omega$,同理:
$$
\hat{H}(a_{\pm}\psi)=(E\pm \hbar \omega)(a_{\pm}\psi)
$$
通过阶梯算符 $a_{\pm}$ 可以实现态能量的升降,但是能量有最小值,其对应的态 $\psi$ 满足:
$$
a_{-}\psi_0=0
$$
即:
$$
\begin{aligned}
0
&=a_{-}\psi_0 \\
&=\frac{1}{\sqrt{2\hbar m \omega}}(\hbar \nabla +m\omega x)\psi_0 \\
&=\frac{1}{\sqrt{2\hbar m \omega}}(\hbar \nabla \psi_0+m\omega x\psi_0)
\end{aligned}
$$
即:
$$
\nabla \psi_0=-\frac{m\omega}{\hbar}x\psi_0
$$
在一维情况下,有:
$$
\begin{aligned}
& \frac{d \psi_0}{\psi_0}=-\frac{m\omega}{\hbar}xdx \\
\Rightarrow
& \psi_0(x)=\psi_0(0)e^{-\frac{m\omega}{2\hbar}x^2}
\end{aligned}
$$
归一化得:
$$
\begin{aligned}
\frac{1}{|\psi_0(0)|^2}
&=\int_{-\infty}^{\infty} e^{-\frac{m\omega}{\hbar}x^2}dx \\
&=2\int_{0}^{\infty} e^{-\frac{m\omega}{\hbar}x^2}dx, \quad t=\frac{m\omega}{\hbar}x^2 \\
&=2\int_{0}^{\infty}e^{-t}\frac{\hbar}{2m\omega}\sqrt{\frac{m\omega}{\hbar t}}dt \\
&=\sqrt{\frac{\hbar}{m\omega}} \Gamma(1/2) \\
&=\sqrt{\frac{\pi \hbar}{m\omega}}
\end{aligned}
$$
即:
$$
\psi_0(x)=\left(\frac{m\omega}{\pi \hbar}\right)^{1/4}e^{-\frac{m\omega}{2\hbar}x^2}
$$
代入谐振子的定态薛定谔方程,得:
$$
\begin{aligned}
& \hbar \omega \left(a_{+}a_{-}+\frac{1}{2}\right)\psi_0=E_0\psi_0, \quad a_{-}\psi_0=0 \\
\Rightarrow
&\frac{1}{2}\hbar \omega\psi_0=E_0\psi_0 \\
\Rightarrow
&E_0=\frac{1}{2}\hbar \omega
\end{aligned}
$$
从谐振子的基态开始,通过升阶算符 $a_{+}$ 可得:
$$
\begin{aligned}
& \psi_n=A_n(a_+)^n\psi_0 \\
& E_n=\left(n+\frac{1}{2}\right)\hbar \omega
\end{aligned}
$$
更一般的,有:
$$
\begin{aligned}
\psi_n=\frac{1}{\sqrt{n!}}(a_+)^n\psi_0
\end{aligned}
$$
进一步的,有:
$$
\begin{aligned}
& a_{+}\psi_n=\sqrt{n+1}\psi_{n+1} \\
& a_{-}\psi_n=\sqrt{n}\psi_{n-1}
\end{aligned}
$$
谐振子的定态是正交归一的,即:
$$
\int_{-\infty}^{\infty}\psi_m^ * \psi_ndx=\delta_{mn}
$$
阶梯算符 $a_{+},a_{-}$ 是 Hermite 共轭的,即:
$$
\int_{-\infty}^{\infty} f^*(a_{\pm}g)dx=\int_{-\infty}^{\infty}(a_{\mp}f)^*gdx
$$
接下来我们考虑用阶梯算符 $a_{\pm}$ 来表示 $x,\hat{p}$,由定义:
$$
\begin{aligned}
& a_{-}=\frac{i\hat{p}+m\omega x}{\sqrt{2\hbar m \omega}} \\
& a_{+}=\frac{-i\hat{p}+m\omega x}{\sqrt{2\hbar m \omega}}
\end{aligned}
$$
于是有:
$$
\begin{aligned}
& x=\sqrt{\frac{\hbar}{2m \omega}}(a_{+}+a_{-}) \\
& \hat{p}=i\sqrt{\frac{\hbar m \omega}{2}}(a_{+}-a_{-})
\end{aligned}
$$
谐振子第 $n$ 态势能的期望为:
$$
\begin{aligned}
\langle V \rangle
&=\frac{m\omega^2}{2}\langle x^2 \rangle \\
&=\frac{m\omega^2}{2}\frac{\hbar}{2m\omega} \langle (a _ {+}+a _ {-})^2 \rangle \\
&=\frac{\hbar \omega}{4}\int _ {-\infty}^{\infty}\psi _ n^ * (a _ {+}^2+a _ {-}^2+a _ {+}a _ {-}+a _ {-}a _ {+})\psi _ ndx, \quad [ a _ {-},a _ {+} ]=1\\
&=\frac{\hbar \omega}{4}\int _ {-\infty}^{\infty}\psi _ n^ * (c _ {+}\psi _ {n+2}+c _ {-}\psi _ {n-2}+2a _ {-}a _ {+}\psi _ n-\psi _ n)dx \\
&=\frac{\hbar \omega}{4}\int _ {-\infty}^{\infty}(2\psi _ n^ * a _ -a _ +\psi _ n-|\psi _ n|^2)dx, \quad a _ {-}a _ {+}=\frac{\hat{H}}{\hbar \omega}+\frac{1}{2} \\
&=\frac{\hbar \omega}{4}\int _ {-\infty}^{\infty}\left( 2\psi _ n^* \frac{\hat{H}}{\hbar \omega}\psi _ n+\psi _ n^* \psi _ n-\psi _ n^* \psi _ n \right)dx \\
&=\frac{1}{2}\int _ {-\infty}^{\infty}\psi _ n^* \hat{H}\psi _ n dx \\
&=\frac{1}{2}\langle \hat{H} \rangle \\
&=\frac{1}{2}E _ n \\
&=\frac{1}{2}\hbar \omega\left(n+\frac{1}{2}\right)
\end{aligned}
$$